

Employing Usage data in Estimating Exposure Concentrations and Risks

- The type of usage data can include:
 - Total and base acres treated
 - Total pounds applied
 - Range of application rates
 - Methods of application
 - Crop treated
 - Number of farms treated
 - Other factors at varying spatial scales
- Usage data may be available by active ingredient, end-use product, and pesticide type

Data Relevant to Refine Exposure

Labeled uses

- Current use through reregistration
- Future labels will reflect significant changes

Incorporating Usage Data (pounds, timing and footprint)

- Ag and Non-Ag uses: defining the areas of action
 - Insecticide use volumes vary with pest outbreaks
- · Factors that define or refine footprint of actual use
 - Percentage of treated area by state and crop
- National scale market surveys –USDA chemical use, AgroTrak
 - Ranges of use rates/numbers at varying spatial scales (state to region to CRD to county)
 - Trends over years
 - Differences by application methods ground vs. aerial
- State use data CA PUR, Washington, Oregon, etc.
 - Permitted use
 - Can be at highly detailed spatial/temporal scale
- Crop specific data Cranberry institute
- Actual use specific AMCA, FLMCC, REJV, company sales data

Next steps examining use data for the consultation process

Develop standard approaches/policy for including use data in consultations

Determine what data is useful at various stages/tiers

- * PTA, where treated, how much is used
- Timing of applications over the cropped area
- Timing over multiple years

Identify gaps in data bases and alternative sources Develop methods for compiling data, characterize uncertainties Develop guidelines for use data

- Goal at each stage/tier of the assessment
- Availability within the time frame of the consultation
- Spatial scale needed to meet the need of a specific species
- * End use product data
- Establish upper limits to the total amount that may be applied
 - all malathion and diazinon is imported, records are available

Program management of Federal and state lands

Mormon cricket control

Percent Treated Area - Ohio basin (HUC02-05)

 $\textit{Upper 90}^{\textit{th}} \ \textit{percentile percent treated area estimated for each state and crop group using the AgroTrak data from 2010-2015}$

STATENAME	Com	Cattern	Orahards and grapes*	Gener crops*	Other trains*	Other row grops	Pasture/ hay/furage	Soybeans	Vegetables and ground fruit
linois	1.3%	3.3%	21.5%	21.5%	1.6%	13.2%	10.1%	3.6%	1.1%
nckena	1.5%	3.3%	21.5%	21.5%	1.6%	13.2%	19.0%	7.1%	1.1%
Sentucky	0.6%	3.3%	21.5%	21.5%	1.6%	2.8%	7.0%	7.2%	1.1%
Maryland	3.7%	3.3%	21.5%	21.5%	1.6%	13.2%	8.5%	7.2%	1.1%
lew York	2.9%	3.3%	21.5%	21.5%	1.6%	13.2%	8.5%	7.2%	1.19
Vorth Carolina	1.2%	3.3%	21.5%	21.5%	1.6%	17.2%	8.5%	7.2%	1.1%
Ohio	0.8%	3.3%	21.5%	21.5%	1.6%	9.5%	3.4%	1.8%	1.1%
^P ennsylvania	3.1%	3.3%	21.5%	21.5%	1.6%	64.2%	4.5%	6.6%	47.7%
ennesses	1.9%	3,3%	21.5%	21.5%	1.6%	4.3%	8.5%	0.3%	1.1%
firgma	2.3%	3.3%	21.5%	21.5%	1.6%	12.8%	7.3%	34.5%	1.1%
Nest Virginia	1.2%	3.3%	21.5%	21.5%	1.6%	13.2%	8.5%	7.2%	1.1%

Winchell, M et al. (2016) Refined Chlorpyrifos Aquatic Exposure Modeling for Endangered Species in Flowing Water Habitats: Ohio River Basin HUC2 Case Study: submitted to EPA docket EPA-HQ-OPP-2008-0850

Ċ

Malathion Mosquitocide Use by County

É

Next steps

Properly define "action" based on to be revised labels. Identify actual use data readily available to FWS Evaluate its usefulness

Develop ways to provide or collect data

- * Registrant contributions
- Data from EPA
- * Aggregate and deliver data through FESTF's Gopher

Proposed Agenda for Next Three Meetings

One, Agricultural Uses:

- Developing a percent treated estimate by crop, state and new label uses from AgroTrak and other data.
- Attendees: USFWS staff, all Registrants, EPA staff, USDA agricultural economist and conservation service staff, FESTF staff.

Two, Non-Agricultural Uses:

- Mappable data on actual use in mosquito control and other uses.
- Attendees: USFWS staff, Registrants, EPA staff, USDA agricultural economist and conservation service staff, FESTF staff.

Three: Field applications and methods.

- Implications of use in the real world.
- Attendees: USFWS staff, Registrant, EPA staff, USDA agricultural economist, conservation and cooperative service staff, FESTF staff.